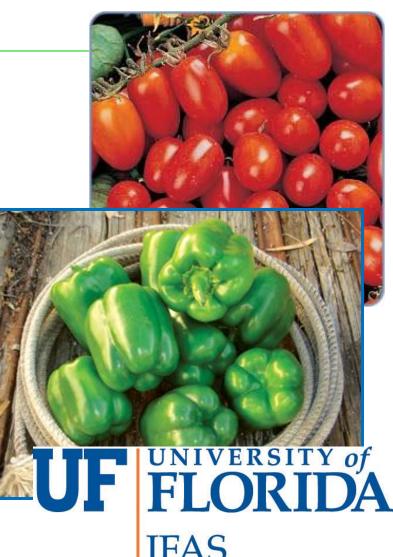
Available Phosphorus by Five Different Soil Testing Methods and Fractionation in Southwest Florida Vegetable Production


> Kelly Morgan Shinjiro Sato Kamal Mahmoud Smita Barkataky Assma Zekri

Southwest Florida Research and Education Center University of Florida Immokalee, FL UNIVERSITY of FLORIDA

FAS

Vegetable Production in Florida

- #2 state in US in fresh market
 vegetable in acreage and production
 (34600 acre) in 2009 (#1-CA)
- #1 state in US in fresh-market value of selected crops including squash, sweet pepper, tomatoes, and watermelons
- Tomato is #1 value crop in FL accounting 26% (\$520 million) of the state's total value in 2009.

BMPs and Fertilizer

- Best Management Practices (BMPs) adopted all current UF/IFAS recommendations.
- Adequate fertilizer rates may be achieved by combinations of UF/IFAS recommended base rates and supplemental applications.
- Fertilizer recommendations are determined based on Mehlich-1 (M1) extractable nutrients prior to planting.

Problems

- The majority of soils in FL is sandy soil (>95% sand) and acidic. But many vegetable production in south FL are on soils naturally high in soil pH (>7.0), P (>100 ppm), and Ca (>1000 ppm).
- M1 extractant is best suitable for acidic soils (pH<7.0), and may dissolve insoluble Ca-P precipitates in soil that are not available to plant uptake.
- M1 results to base P recommendations may not be appropriate for alkaline and calcareous soils, while Bray and Olsen extractants are typically used for such soils.
- There is a need to evaluate the best soil P test methods for growers in south FL to base P recommendations particularly in calcareous soils.

Fertilizer Recommendations

Recommendation category by Mehlich-1 extractable nutrients in native (pre-plant) soil

Element	Very Low	Low	Medium	High	Very High	
	mg/kg					
Р	<10	10-15	16-30	31-60	>60	
К	<20	20-35	36-60	61-125	>125	

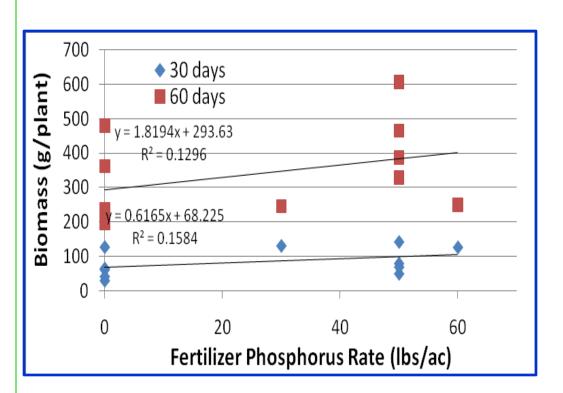
Soil pH and fertilizer recommendation by UF/IFAS for mineral soils for **TOMATO**

Element	Very Low	Low	Medium	High	Very High	
	lb/acre/season					
Target pH	6.5					
Ν	200					
P ₂ O ₅	150	120	100	0	0	
K ₂ O	225	150	100	0	0	

Field Experiments (3 years)

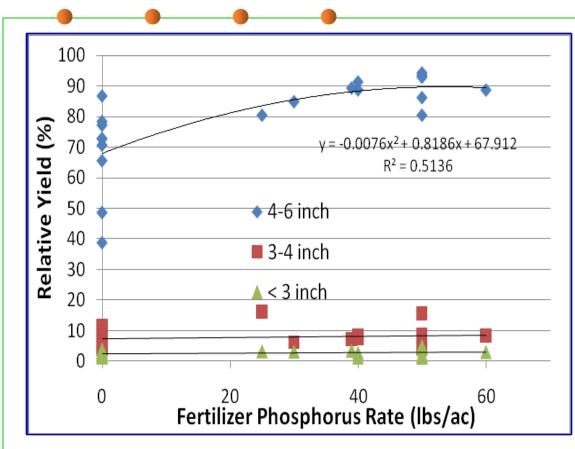
Growing year	Farm	Period Crop		P ₂ O ₅ rates (lb/acre)*	
2008-2009	1	Oct 08 – Mar 09	Tomato	0, 60, 120	
	2	Feb 09 – Jun 09	Tomato	0, 60, 90, 120	
2009-2010	1	Oct 09 – Mar 10	Tomato	0, 60, 120	
	2	Oct 09 – Jan 10	Tomato	0, 60, 90, 120	
2010-2011	1	Nov 10 – Dec 10	Tomato	0, 60, 90, 120	
	2	Sep 10 – Feb 11	Tomato	0, 60, 90, 120	

* 0, 50, 75, and 100% of IFAS recommended rates determined using "low" category in soil test P index


- Soil samples at 2 depths (0-15 and 15-30 cm) from center of bed at pre-plant and on about 0, 30, 60, 90, and 120 days after planting.
- 5 different soil P extractants: M1, Mehlich-3 (M3), Bray, Olsen, and AB-DTPA.
 - Modified Hedley P fractionation on the samples from the upper depths.

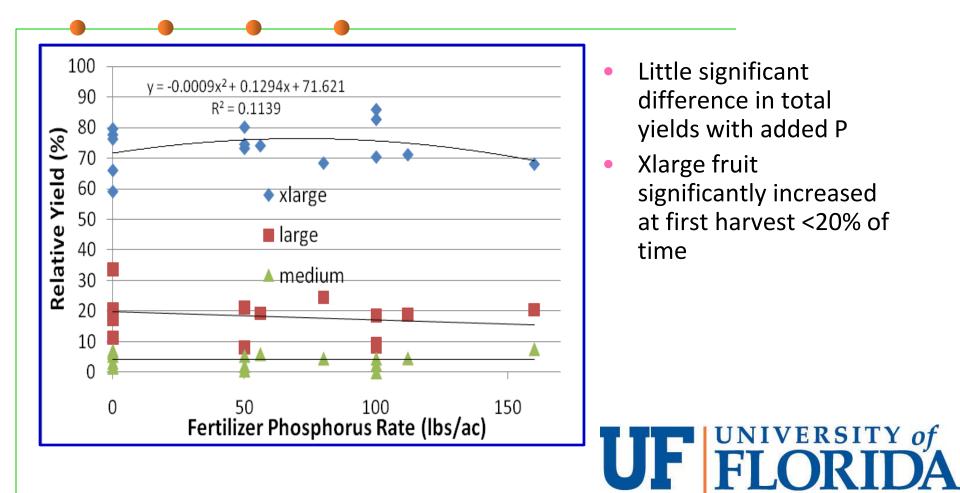
Selected Soil Properties (pre-plant samples)

						(mg/kg)
Farm	рН	M-1 P	M-1 Ca	M-1 Mg	M-1 Fe	M-1 Al
Farm 1 (alkaline and non-calcareous)	7.43	99	829	52	18	56
Farm 2 (alkaline and calcareous)	7.08	454	3102	81	44	215

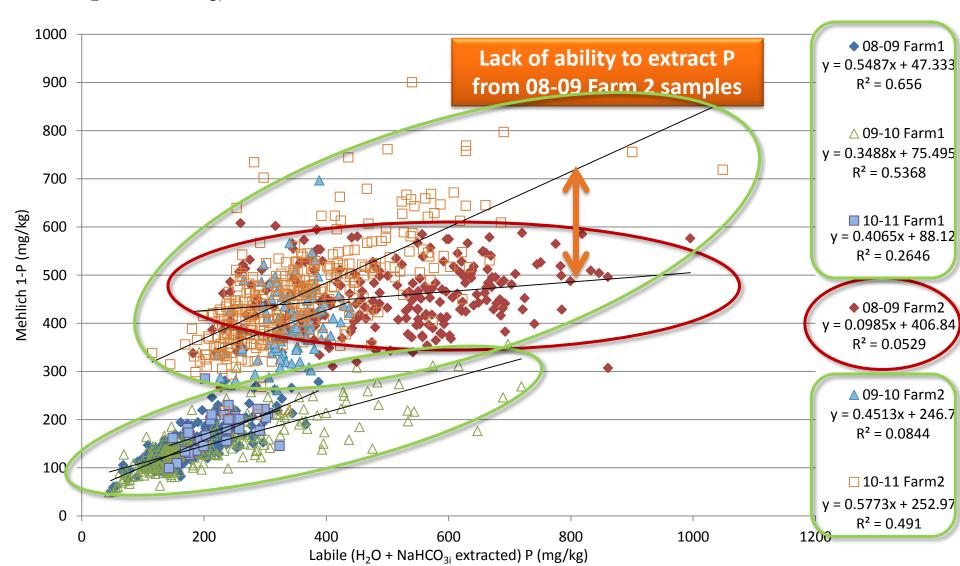

Green Bean – Growth Response to Added P

- Leaf P was in optimum range at all sample dates
- 28% leaf P significantly greater in full P rate compared with zero rate
- 44% of sample had significantly greater biomass at 30 and 60 days after planting with increased fertilizer P

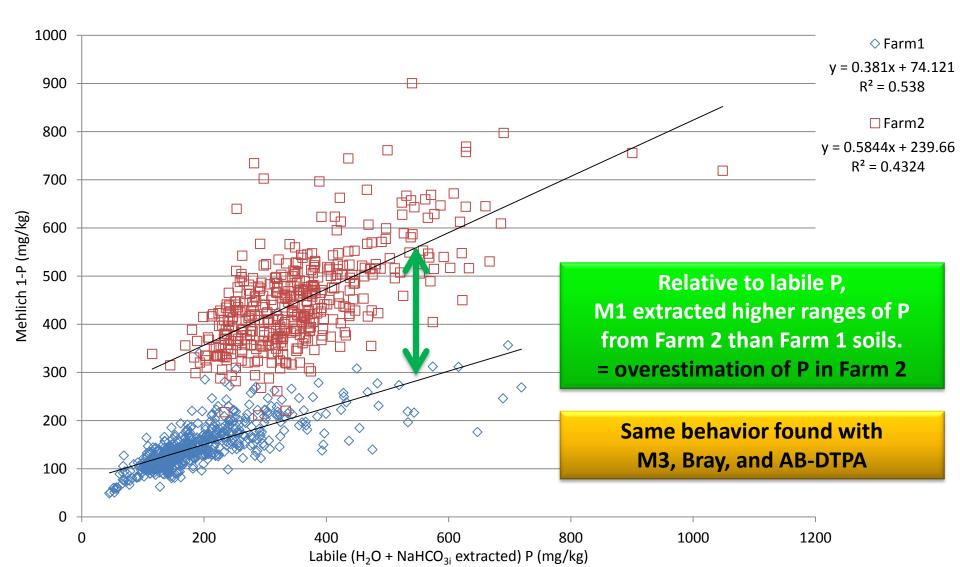
Green Bean – Yield Results



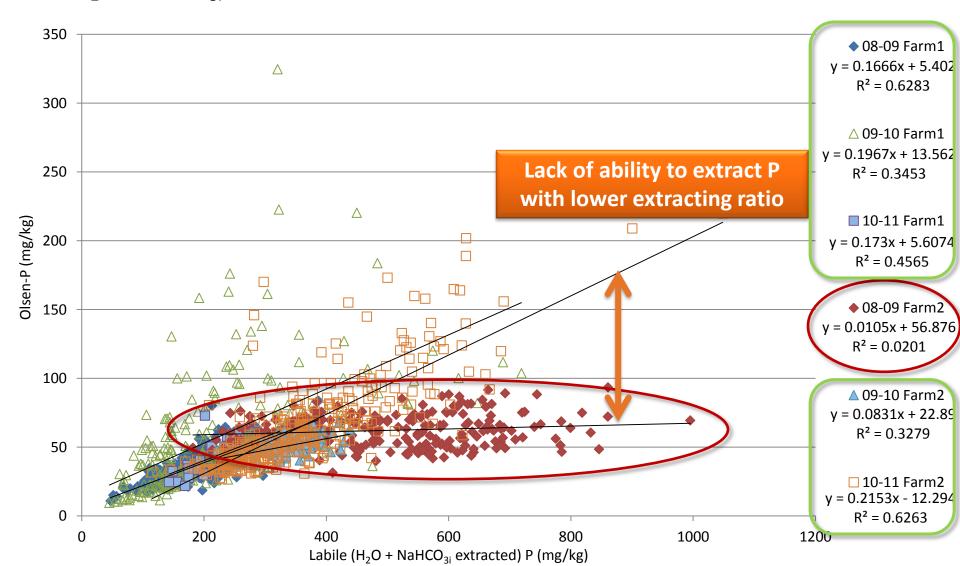
- 28% of crops significant increase in pods < 3 inches long with increased fertilizer P
- 78% of crops significant increase in pods > 4 inches long with increased P rate


IFAS

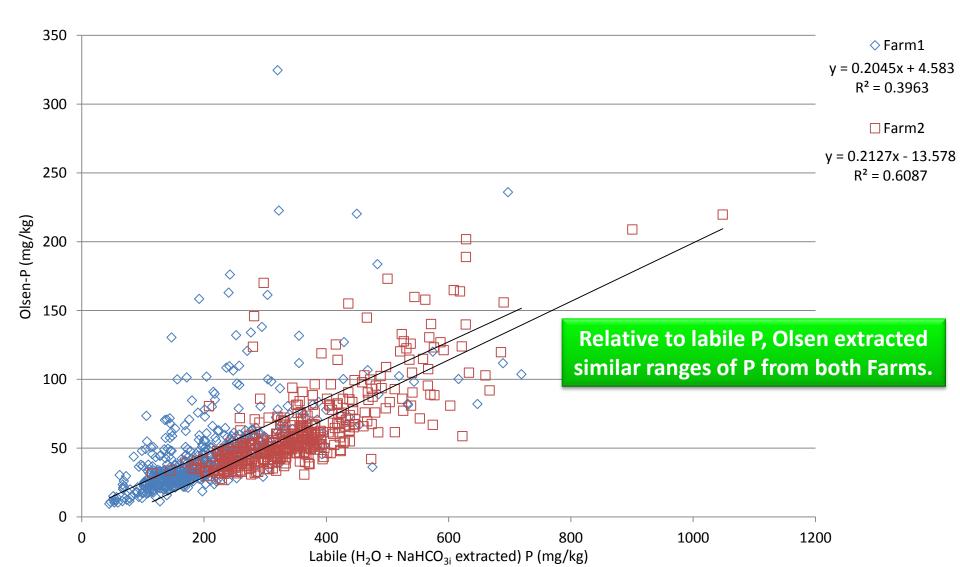
Tomatoes – Yield Results


Labile P vs. M1-P by Year/Farm

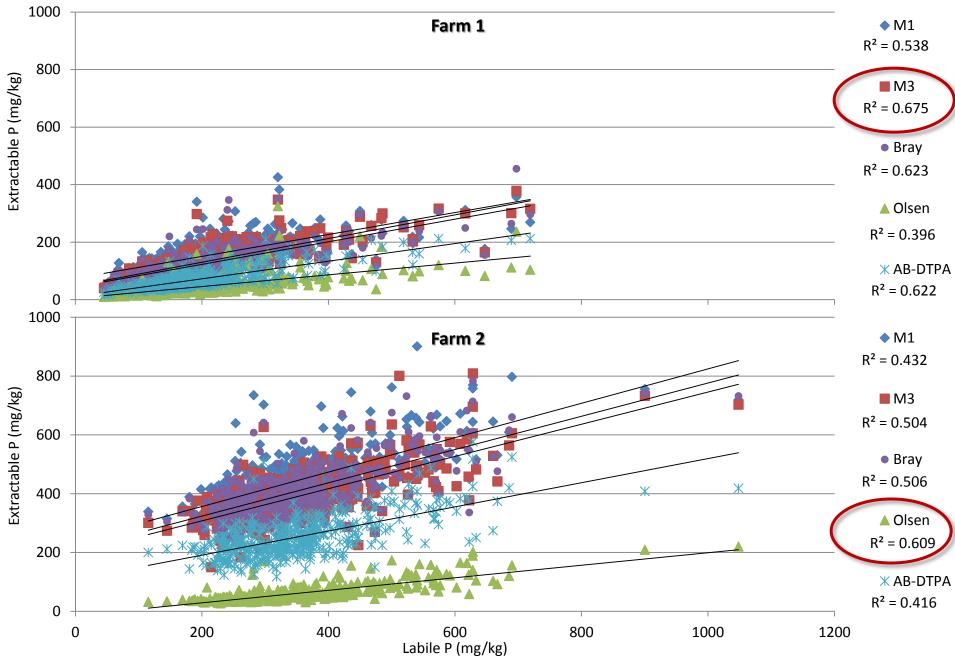
(H₂O+NaHCO_{3i} extractable)


Labile P vs. M1-P by Farm

(08-09 Farm 2 excluded)


Labile P vs. Olsen-P by Year/Farm

(H₂O+NaHCO_{3i} extractable)



Labile P vs. Olsen-P by Farm

(08-09 Farm 2 excluded)

Labile P vs. Extractable P (08-09 Farm 2 excluded)

Conclusions – Farm 1

(relatively high P but non-calcareous soil)

- ➢ M1, M3, Bray, and AB-DTPA extractants were able to extract labile (H₂O + NaHCO₃i) P with high r² values (0.538-0.675). M3 among them was best correlated with labile pool.
- Olsen had the poorest r² value (0.396) with labile P among 5 extractants tested.

Conclusions – Farm 2

(extremely high P and calcareous soil)

- M1, M3, Bray, and AB-DTPA had lower r² values with labile P (0.416-0.506), compared to those in Farm 1, respectively.
- They may overestimate labile P in calcareous soils. M1 and M3 are better correlated (r²=) to total P than labile P.
- Olsen had better r² than that in Farm 1 and the best r² among 5 extractants with labile P (0.609), indicating the superiority of Olsen to others in such soils for soil P test.

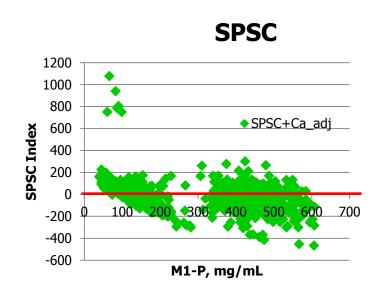
Future BMPs: Some New Uses for Soil Extractants, Based on pH

• Fe and Al controls on nutrients

- Phosphorus Saturation Ratio: predicts when P concentration exceeds Fe and Al and/or Ca to hold P in the soil (saturation)
 - *Nair et al. 2010.* An Indicator for Risk of Phosphorus Loss from Sandy Soils;
- Soil Phosphorus Storage Capacity: Predictions with threshold points work for soil horizons and with several extractants including M1 and M3
 - Nair et al. 2010. Understanding Soil Phosphorus Storage Capacity.
 IFF UNIVERSITY of FI OR IDA

Vegetable Example: Soil Phosphorus Storage Capacity (SPSC)

- >800 soil samples from 5 vegetable farms
 - Same Watershed, seep irrigation
 - Lime additions: ~1 ton ag lime/acre/yr (overliming)
 - Lime was added for 15 years
 - Soil pH: 6.8 to 8.4 and extractable Ca
 - One farm used Organic Matter annually


SPSC: Continued

- When SPSC > 0 then P can be held in the soil
- When SPSC < 0 then P can be lost from the soil
- Crop response with proper soil pH is not expected when M1-extractable P is >30 ppm
- Most soils had excessive lime resulting in both high pH and high extractable Ca
 - P response is likely because of excess Ca reacting with P
- In this example, more than 50% of soils are predicted to lose P from the soil (SPSC is negative)

SPSC: Continued

- Preliminary interpretations indicate that:
 - The two data clouds are related to organic matter additions
 - Left side data cloud are mostly farms not adding organic matter (low % OM not contributing to P retention)
 - Right side data cloud are values mostly from the farm adding organic matter, or from farms with elevated %OM naturally (increased % OM also holding more P)
 - Due to high pH and extractable Ca concentrations, the SPSC included an adjustment for Ca

- The SPSC appears to have value when considering P movement and crop response
- Application of the SPSC in our example pointed to the need for improved soil pH management to benefit from P fertilizer additions

